Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Med Virol ; 94(4): 1655-1669, 2022 04.
Article in English | MEDLINE | ID: covidwho-1589034

ABSTRACT

To explore the influence of changes in human lifestyle and the living environment caused by nonpharmaceutical interventions in coronavirus disease 2019 (COVID-19) on allergic diseases, the present study enrolled children who came to the Children's Hospital of Zhejiang University for allergen detection between January 2019 and December 2020. By comparing the positive rates and levels of various allergen-specific immunoglobulin E (IgE) before and during the COVID-19 pandemic, the influence of changes in human lifestyle and the living environment caused by prevention and control measures in COVID-19 on allergic diseases was evaluated. In 2019, 41 648 allergic children went to the hospital, but in 2020, due to the impact of the COVID-19 epidemic, the number decreased to 24 714. In 2020, the number of allergy visits was the lowest in February and gradually increased. There were 45 879 children with total IgE > 17.5 IU/ml in 2 years, accounting for 69.13% of the total samples, of which the proportion was 68.52% (28 536/41 648) in 2019 and 70.17% (17 343/24 714) in 2020. A total of 29 906 children were positive for one or more allergens in 2 years. It accounts for 45.06% of the total number of samples, of which the proportion is 41.53% (17 296/41 648) in 2019 and 51.02% (12 610/24 714) in 2020. Except for cashew nuts, the positive number of other allergens in 2020 was less than in 2019, especially after June and July 2020. Except for Artemisia argyi, the positive rates of other allergens in 2020 were significantly higher than those in 2019 (p < 0.05). Moreover, the changing trend of the positive allergen rate in each month in 2020 was different from that in 2019. In 2020, except for Dermatophagoides farinae, Dermatophagoides pteronyssinus, and Crab, specific IgE levels of other allergens were not greater than those in 2019 (p < 0.05). Thus it can be seen, during the COVID-19 pandemic, nonpharmaceutical interventions played a protective role in reducing children's exposure to allergens and alleviating allergic reactions.


Subject(s)
COVID-19/epidemiology , Hypersensitivity/epidemiology , Allergens/classification , Allergens/immunology , Animals , COVID-19/prevention & control , Child , Child, Preschool , China/epidemiology , Female , Humans , Hypersensitivity/blood , Immunoglobulin E/blood , Immunoglobulin E/immunology , Incidence , Infant , Infant, Newborn , Male , SARS-CoV-2
2.
Int J Mol Sci ; 22(19)2021 Oct 08.
Article in English | MEDLINE | ID: covidwho-1463712

ABSTRACT

Nanomaterials have found extensive interest in the development of novel vaccines, as adjuvants and/or carriers in vaccination platforms. Conjugation of protein antigens at the particle surface by non-covalent adsorption is the most widely used approach in licensed particulate vaccines. Hence, it is essential to understand proteins' structural integrity at the material interface in order to develop safe-by-design nanovaccines. In this study, we utilized two model proteins, the wild-type allergen Bet v 1 and its hypoallergenic fold variant (BM4), to compare SiO2 nanoparticles with Alhydrogel® as particulate systems. A set of biophysical and functional assays including circular dichroism spectroscopy and proteolytic degradation was used to examine the antigens' structural integrity at the material interface. Conjugation of both biomolecules to the particulate systems decreased their proteolytic stability. However, we observed qualitative and quantitative differences in antigen processing concomitant with differences in their fold stability. These changes further led to an alteration in IgE epitope recognition. Here, we propose a toolbox of biophysical and functional in vitro assays for the suitability assessment of nanomaterials in the early stages of vaccine development. These tools will aid in safe-by-design innovations and allow fine-tuning the properties of nanoparticle candidates to shape a specific immune response.


Subject(s)
Allergens/immunology , Antigens, Plant/immunology , Epitopes/immunology , Lymphocyte Activation/immunology , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Vaccines/immunology , Allergens/chemistry , Humans , Hydrogels , Immunoglobulin E/immunology , Respiratory Hypersensitivity/immunology , T-Lymphocytes/immunology
3.
Clin Exp Allergy ; 52(2): 324-333, 2022 02.
Article in English | MEDLINE | ID: covidwho-1437986

ABSTRACT

BACKGROUND: Deaths attributed to Coronavirus Disease 2019 (COVID-19) are mainly due to severe hypoxemic respiratory failure. Although the inflammatory storm has been considered the main pathogenesis of severe COVID-19, hypersensitivity may be another important mechanism involved in severe cases, which have a perfect response to corticosteroids (CS). METHOD: We detected the serum level of anti-SARS-CoV-2-spike S1 protein-specific IgE (SP-IgE) and anti-SARS-CoV-2 nucleocapsid protein-specific IgE (NP-IgE) in COVID-19. Correlation of levels of specific IgE and clinical severity were analysed. Pulmonary function test and bronchial provocation test were conducted in early convalescence of COVID-19. We also obtained histological samples via endoscopy to detect the evidence of mast cell activation. RESULT: The levels of serum SP-IgE and NP-IgE were significantly higher in severe cases, and were correlated with the total lung severity scores (TLSS) and the PaO2 /FiO2 ratio. Nucleocapsid protein could be detected in both airway and intestinal tissues, which was stained positive together with activated mast cells, binded with IgE. Airway hyperresponsiveness (AHR) exists in the early convalescence of COVID-19. After the application of CS in severe COVID-19, SP-IgE and NP-IgE decreased, but maintained at a high level. CONCLUSION: Hypersensitivity may be involved in severe COVID-19.


Subject(s)
Bronchi/immunology , COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , Duodenum/immunology , Hypersensitivity/immunology , Immunoglobulin E/immunology , Mast Cells/immunology , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Bronchi/metabolism , Bronchi/pathology , COVID-19/metabolism , COVID-19/pathology , COVID-19/physiopathology , Case-Control Studies , Coronavirus Nucleocapsid Proteins/metabolism , Duodenum/metabolism , Duodenum/pathology , Female , Humans , Hypersensitivity/metabolism , Hypersensitivity/pathology , Hypersensitivity/physiopathology , Lung/physiopathology , Male , Mast Cells/metabolism , Mast Cells/pathology , Middle Aged , Mucous Membrane/immunology , Mucous Membrane/metabolism , Mucous Membrane/pathology , Phosphoproteins/immunology , Phosphoproteins/metabolism , Recovery of Function , Respiratory Hypersensitivity/physiopathology , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index , Spike Glycoprotein, Coronavirus/metabolism , Young Adult
4.
J Ethnopharmacol ; 282: 114574, 2022 Jan 10.
Article in English | MEDLINE | ID: covidwho-1373117

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Gekko gecko is used as a traditional medicine for various diseases including respiratory disorders in northeast Asian countries, mainly Korea, Japan, and China. AIM OF THE STUDY: Allergic asthma is a chronic respiratory disease caused by an inappropriate immune response. Due to the recent spread of coronavirus disease 2019, interest in the treatment of pulmonary disorders has rapidly increased. In this study, we investigated the anti-asthmatic effects of G. gecko extract (GGE) using an established mouse model of ovalbumin-induced asthma. MATERIALS AND METHODS: To evaluate the anti-asthmatic effects of GGE, we evaluated histological changes and the responses of inflammatory mediators related to allergic airway inflammation. Furthermore, we investigated the regulatory effects of GGE on type 2 helper T (Th2) cell activation. RESULTS: Administration of GGE attenuated asthmatic phenotypes, including inflammatory cell infiltration, mucus production, and expression of Th2 cytokines. Furthermore, GGE treatment reduced Th2 cell activation and differentiation. CONCLUSIONS: These results indicate that GGE alleviates allergic airway inflammation by regulating Th2 cell activation and differentiation.


Subject(s)
Anti-Asthmatic Agents/therapeutic use , Asthma/drug therapy , Medicine, East Asian Traditional , Mucus/metabolism , Ovalbumin , Plant Extracts/therapeutic use , Animals , Asthma/chemically induced , Asthma/pathology , Bronchoalveolar Lavage Fluid , COVID-19 , Cytokines/metabolism , Female , Flow Cytometry , Immunoglobulin E/immunology , Inflammation Mediators/metabolism , Lung/pathology , Mice , Mice, Inbred BALB C , Pandemics , Th2 Cells/drug effects , Th2 Cells/immunology , Tryptamines/pharmacology
5.
Nutrients ; 13(8)2021 Jul 30.
Article in English | MEDLINE | ID: covidwho-1335160

ABSTRACT

The COVID-19 pandemic is the most challenging global health crisis of our times. Vaccination against COVID-19 plays a key role to control the current pandemic situation. The risk of allergic reactions to new COVID-19 vaccines is low. However, there is a debate on the safety in allergic patients following post marketing findings by different agencies. Our aim is to understand from current experiences whether children with cow's milk or food allergy are at higher risk than a general population for allergic reactions to COVID-19 vaccines. Current data indicate that patients with a history of allergy to cow's milk or other foods, even if severe, should receive COVID-19 vaccine in a setting with availability of treatments for anaphylactic reactions and under medical supervision. Recipients should be discharged after a protracted observation period of 30 min if no reaction developed.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Food Hypersensitivity/immunology , Milk Hypersensitivity/immunology , Adolescent , Allergens/immunology , Anaphylaxis/etiology , Animals , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Child , Female , Humans , Immunoglobulin E/immunology , Male , Milk/adverse effects , Polyethylene Glycols/adverse effects , Polyethylene Glycols/therapeutic use , SARS-CoV-2 , Vaccination/adverse effects
6.
Immunopharmacol Immunotoxicol ; 43(3): 259-264, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1238100

ABSTRACT

Coronavirus disease 2019 (COVID-19) is associated with irreversible effects on vital organs, especially the respiratory and cardiac systems. While the immune system plays a key role in the survival of patients to viral infections, in COVID-19, there is a hyperinflammatory immune response evoked by all the immune cells, such as neutrophils, monocytes, and includes release of various cytokines, resulting in an exaggerated immune response, named cytokine storm. This severe, dysregulated immune response causes multi-organ damage, which eventually leads to high mortality. One of the most important components of hypersensitivity is immunoglobulin E (IgE), which plays a major role in susceptibility to respiratory infections and can lead to the activation of mast cells. There is also a negative association between IgE and IFN-α, which can reduce Toll-like receptor (TLR) nine receptor expression and TLR-7 signaling to disrupt IFN production. Moreover, anti-IgE drugs such as omalizumab reduces the severity and duration of COVID-19. In addition to its anti-IgE effect, omalizumab inhibits inflammatory cells such as neutrophils. Hence, blockade of IgE may have clinical utility as an immunotherapy for COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19/immunology , Omalizumab/therapeutic use , Signal Transduction/drug effects , Humans , Immunoglobulin E/immunology , Interferon-alpha/immunology , Omalizumab/immunology , Signal Transduction/immunology , Toll-Like Receptor 7/immunology
7.
Dermatol Ther ; 33(6): e14068, 2020 11.
Article in English | MEDLINE | ID: covidwho-1153451

ABSTRACT

Coronavirus disease (COVID-19) pandemic presents several dermatological manifestations described in the present indexed literature, with around 700 cases reported until May 2020, some described as urticaria or urticarial rashes. Urticaria is constituted by evanescent erythematous-edematous lesions (wheals and flare), which does not persist in the same site for more than 24 to 48 hours and appears in other topographic localization, resolving without residual hyper pigmentation. During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, some cytokines are synthesized, including Interferon (IFN) type I, TNF-α, and chemokines which may induce mast cells (MCs) and basophils degranulation by mechanisms similar to the autoinflammatory monogenic or polygenic diseases. In this article, we discuss the spectrum of the urticaria and urticarial-like lesions in the COVID-19's era, besides other aspects related to innate and adaptative immune response to viral infections, interactions between dermal dendritic cells and MCs, and degranulation of MCs by different stimuli. Plasmacytoid dendritic cells share, in allergic patients, expression of the high-affinity IgE receptors on cell membranes and demonstrated a low pattern of type I IFN secretion in viral infections. We discuss the previous descriptions of the effects of omalizumab, a monoclonal antibody directed to IgE and high-affinity IgE receptors, to improve the IFN responses and enhance their antiviral effects.


Subject(s)
COVID-19/complications , Omalizumab/pharmacology , Urticaria/virology , Antiviral Agents/pharmacology , COVID-19/immunology , Cytokines/immunology , Dendritic Cells/immunology , Humans , Immunoglobulin E/immunology , Mast Cells/immunology , SARS-CoV-2/isolation & purification , Urticaria/drug therapy , Urticaria/immunology , COVID-19 Drug Treatment
9.
Nature ; 589(7843): 630-632, 2021 01.
Article in English | MEDLINE | ID: covidwho-1049956
11.
Front Immunol ; 11: 576255, 2020.
Article in English | MEDLINE | ID: covidwho-886166

ABSTRACT

In the last decade single domain antibodies (nanobodies, VHH) qualified through their unique characteristics have emerged as accepted and even advantageous alternative to conventional antibodies and have shown great potential as diagnostic and therapeutic tools. Currently nanobodies find their main medical application area in the fields of oncology and neurodegenerative diseases. According to late-breaking information, nanobodies specific for coronavirus spikes have been generated these days to test their suitability as useful therapeutics for future outbreaks. Their superior properties such as chemical stability, high affinity to a broad spectrum of epitopes, low immunogenicity, ease of their generation, selection and production proved nanobodies also to be remarkable to investigate their efficacy for passive treatment of type I allergy, an exaggerated immune reaction to foreign antigens with increasing global prevalence.


Subject(s)
Antibodies, Blocking/therapeutic use , Hypersensitivity/therapy , Immunotherapy/methods , Single-Domain Antibodies/therapeutic use , Antibodies, Blocking/immunology , Antigens/immunology , Epitopes/immunology , Humans , Immunoglobulin E/immunology , Single-Domain Antibodies/immunology
12.
Nature ; 584(7821): 463-469, 2020 08.
Article in English | MEDLINE | ID: covidwho-677004

ABSTRACT

Recent studies have provided insights into the pathogenesis of coronavirus disease 2019 (COVID-19)1-4. However, the longitudinal immunological correlates of disease outcome remain unclear. Here we serially analysed immune responses in 113 patients with moderate or severe COVID-19. Immune profiling revealed an overall increase in innate cell lineages, with a concomitant reduction in T cell number. An early elevation in cytokine levels was associated with worse disease outcomes. Following an early increase in cytokines, patients with moderate COVID-19 displayed a progressive reduction in type 1 (antiviral) and type 3 (antifungal) responses. By contrast, patients with severe COVID-19 maintained these elevated responses throughout the course of the disease. Moreover, severe COVID-19 was accompanied by an increase in multiple type 2 (anti-helminths) effectors, including interleukin-5 (IL-5), IL-13, immunoglobulin E and eosinophils. Unsupervised clustering analysis identified four immune signatures, representing growth factors (A), type-2/3 cytokines (B), mixed type-1/2/3 cytokines (C), and chemokines (D) that correlated with three distinct disease trajectories. The immune profiles of patients who recovered from moderate COVID-19 were enriched in tissue reparative growth factor signature A, whereas the profiles of those with who developed severe disease had elevated levels of all four signatures. Thus, we have identified a maladapted immune response profile associated with severe COVID-19 and poor clinical outcome, as well as early immune signatures that correlate with divergent disease trajectories.


Subject(s)
Coronavirus Infections/immunology , Coronavirus Infections/physiopathology , Cytokines/analysis , Pneumonia, Viral/immunology , Pneumonia, Viral/physiopathology , Adult , Aged , Aged, 80 and over , COVID-19 , Cluster Analysis , Cytokines/immunology , Eosinophils/immunology , Female , Humans , Immunoglobulin E/analysis , Immunoglobulin E/immunology , Interleukin-13/analysis , Interleukin-13/immunology , Interleukin-5/analysis , Interleukin-5/immunology , Male , Middle Aged , Pandemics , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Viral Load , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL